
Measuring the efficiency of Binary Search Trees

Research Question:  
How does the re-balancing algorithm efficiency of a Splay

Tree compare to that of an Adelson- Velskii and Landis
Tree in terms of time complexity upon insertion of values?

Computer Science Extended Essay 
Word Count: 3990 

I

Table of Content

1. Introduction	
__1
1.1 Motivation	
...1

1.2 Background	
..1

2. Theory	
___1
2.1 Binary Search Trees	
...1

2.2 Splay Trees	
..7
2.2.1 Zig & Zag	
..7

2.2.2 Zig-Zig & Zag-Zag	
..7

2.2.3 Zig-Zag & Zag-Zig	
..9

2.3 Adelson-Velskii and Landis (AVL) Tree	
...13
2.3.1 Single rotation	
...14

2.3.2 Double rotation	
..15

3. Hypothesis	
___18
3.1 Approach	
..18

3.2 Expectations	
..18

4. Experimentation	
__19
4.1 Fixed Variables	
..19

4.2 Independent Variables	
...19

4.3 Constant Variables	
...21

4.4 Testing Procedure	
..22

5. Data Representation	
____________________________________22
5.1 Numeric Presentation	
..22

5.2 Graph Presentation	
..23

6. Test Analysis	
___24

II

6.1 Hypothesis Evaluation	
...24

6.2 Relation Analysis	
...26

7. Conclusion	
__26
Bibliography	___28

III

1. Introduction 

1.1 Motivation  

	 As an enthusiast of Computer Science, I’ve always found the nature of “Data” fascinating! Today,

in most things we use in our routines, data is all around us in very different forms. In this research, I’ll be

exploring the complexity behind data, by looking at the structure of binary search trees. I hope to reach a

clear conclusion on the comparison between two different types of binary search trees while raising my

understanding of them throughout the research.

1.2 Background

 

	 This research will specifically look into two different binary search trees; the Splay Tree and the

Adelson-Velskii and Landis Tree (AVL), and will compare their time complexity for the insertion of a

given set of values. The term "time complexity" describes how long an algorithm takes to execute given a

collection of input values of a specific size. Consequently, this research will explore “How the re-

balancing algorithm efficiency of a Splay Tree compares to that of an Adelson-Velskii and Landis Tree

in terms of time complexity upon insertion of values”.

2. Theory  

2.1 Binary Search Trees

 

	 The basis of the two trees under investigation is a binary search tree, a data structure with well-

defined behavior. Binary means “being consisting of two things”, as in each item (node) in a tree points to

a maximum of two other nodes, which are referred to, as children. However, a node can also be pointing

at one, or no other child at all.

	 When a value is inserted, a binary search tree must determine where to place it. This placement is

done, regarding the conditions each node has. Each node in the tree has a left child pointer and a right

1

child pointer that both points to different nodes. A node's right child must have a value greater than the

node, and therefore the left child must have a value smaller than the node. The first value, placed at the

top of the tree, is called the root node, also referred to as a parent or grandparent of a child node.

Inserting a new node can be done by having a simple “if - else” approach:

A. If the tree has no nodes, the node will be placed as the root node.

B. Else, If the tree has a root node, and its value is greater than the inserted node’s value, this process

will occur for the root node’s left child position as well.

C. Else, If the tree has a root node, and its value is smaller than the inserted node’s value, this process

will occur for the root node’s right child position as well.

D. Else, If the root node doesn't have a left or right child, the node will be placed there.

E. Else, the property of the inserted node does not match the other existing ones.

	 I wrote the full code for insertion (in C), using the approach of the above algorithm for further

understanding (Appendix E). Figures 2.1.A and 2.1.B show a snippet of that code.

2

Figure 2.1.A: Insertion “if-else” statement in a Binary Tree.

	

	 The “key” variable in Figure 2.1.A indicates the variable type’s value stored in the root. In binary

search trees, a key (value) is placed in a node (container). In a real-life insertion, the insert method will

contain both the node’s (or root’s) id and the key inserted. As shown on lines 16 & 19’s insert function.

	 Note: the “NULL” keyword used in the programs above, refers to an empty node (without any

value inside), or non-existent.

	 In Figure 2.1.B, the getNewNode() function is shown. The function is only executed (as seen in

Figure 2.1.A) when the node being inserted is the first one in the tree (root == NULL). Notice how after

the value being inserted was set as the “key” in line 13, the algorithm automatically produces 2 empty

children for the root in lines 14-15. This prevents from this process happening in the next insertion of

values, and therefore improves time efficiency.

	 Another important matter about BSTs is the variety of data able to be inserted into them. A BST

can contain Strings or Doubles, etc. with the same algorithm that it holds integers with. However, these

data cannot be inserted into a tree together, as the algorithm will not be able to find a relationship between

them. Therefore option “E” stated above exists, for making sure the property of the data being inserted

match one another.

3

Figure 2.1.B: function for insertion in Binary Tree

 

	 The search function is the main purpose of a Binary Search Tree, as indicated by the “search” in

it. The searching process has the same approach as insertion.

	 Because of the way nodes are organized in a BST structure, searching for values is much more

efficient than other methods, like a linear search. There are various notations available to measure this

4

Figure 2.1.D: Simple Visualization of the “Insertion of nodes in a
Binary Tree”

Figure 2.1.C: Visual example of Binary
Data Tree

efficiency, one of which is the “Big-O Notation”, used to measure the worst-case efficiency of an

algorithm. The searching efficiency for an array is 0(N), and 0(log2 N) for a BST, where N indicates the

size of the structure. The difference in efficiency, therefore, is recognizable and massive, as shown in

Figure 2.1.E, where the y-axis shows the two data structures, and the x-axis shows the number of values

stored.

BLACK — ARRAY

BLUE — BINARY SEARCH TREE

Although this is a great feature of the BST, this structure has an exception. When a sequence of

nodes, like 1,2,3,4, gets inserted into the tree, its search efficiency is calculated like an Array, as the tree’s

structure is unbalanced, as shown in Figure 2.1.F.

5

Figure 2.1.E: Graph showing the worst-case number of searches for BST and an Array

	 The structure will function similarly to a linear search in such exceptional insertions. This case

scenario's search efficiency will therefore be, 0(4). Therefore this structure is not considered a BST.

Trees will incorporate balancing algorithms to address the issue and maintain the structure

they require (reducing the number of searches needed to find a value). Different methods for

implementing the same structure are possible, each of which has the same behavior but uses a different

technique to ensure it, which means some implementations are better than others in various ways. Both

Splay Trees and AVL Trees have distinct definitions of how they balance themselves or increase their

efficiency when the balancing algorithm is taken into account, which we will be exploring in detail.

6

Figure 2.1.F: Example of an unbalanced BST

2.2 Splay Trees

 

	 Unlike most BSTs, the Splay Tree does not have any specific conditions to balance itself, as no

operation can be found efficient. A Splay Tree doesn't always need to be balanced, however, a method

known as Splaying is implemented to make the tree more balanced every time upon insertion, deletion,

etc. It is therefore important to acknowledge that in this case, maintaining balance is only done to have

better time efficiency.

In question to the tree’s root, splaying moves the node. In our case, upon insertion, the splay tree

takes the BST’s approach, and moves the newly inserted node, to its appropriate root. The splay tree uses

various rotations to move elements upward in the tree, while they also shorten the path to any nodes along

the path to the splayed node. This latter effect means that splaying operations don't necessarily make the

tree more balanced, however, it tends to move the newly inserted nodes upward, and therefore make them

more accessible, and the tree more efficient.

2.2.1 Zig & Zag

 

	 When the node being splayed, is the child of the root, either node is a left child of the root, in

which case every node moves one place to the right, or the node is a right child of its parent in which case

every node moves one place to the left.

2.2.2 Zig-Zig & Zag-Zag

 

7

Figure 2.2.A: Example of a zig rotation

Figure 2.2.B: Example of a zag rotation

	 In this rotation, lower down in the tree rotations are performed in pairs so that nodes on the path

from the splayed node to the root move closer to the root on average. Same as the previous rotation, while

the node is the left child, every node moves two steps right, and vice versa.

8

Figure 2.2.C: Example of a zig-zig rotation (Double Zig)

Figure 2.2.D: Example of a zag-zag rotation (Double Zag)

2.2.3 Zig-Zag & Zag-Zig

 

	 In this case, the splayed node is the left child of a right child or vice versa, therefore both right

and left movements happen together. The rotations produce a subtree whose height is less than that of the

original tree. Thus, this rotation improves the balance of the tree.

	 Note: In double rotations such as Zig-Zig or Zag-Zig, etc. the rotations will execute separately

(the second rotation will only occur after all nodes have completed their first rotation).

	 Although only the zig-zag & zag-zig rotations balance the tree, as it results in its height to reduce,

the splaying method holds the most recently accessed nodes at the top of the tree, which is more

influential in time efficiency.

	 I’ll be investigating the insertion time complexity of the Splay Tree, using Dr. Weiss’s open-

source Java code (Appendix C). The two rotation algorithms can be found in Figures 2.2.G and 2.2.H.

9

Figure 2.2.E: Example of a zig-zag rotation

Figure 2.2.F: Example of a zag-zig rotation

	 It can be seen that while rotating with each child, the opposite direction will be rotated. This is

done by assigning a direction to each variable in line 243, applying the rotation in line 244, and finally

adjusting variables by swapping them in line 245.

	 As we explore the time complexities upon insertion, let's look at the insertion function provided

in the full code (Appendix C). I will be using the same function, for testing the insertion’s time and

comparison of the two trees.  

10

Figure 2.2.G: Algorithm used for right child rotation

Figure 2.2.H: Algorithm used for Left child rotation

	 In Figure 2.2.I, the x variable indicates the new node being inserted. The program first checks if

any nodes are being inserted, and once it makes sure there are none, it will insert a new one on lines

44-46. The program then checks if the tree has a root, the same as the BST’s approach in lines 48-52. If

there is a root, the algorithm will start the splaying method. It compares x with the existing parent and

splays accordingly as shown above in the left and right child rotation functions in lines 57-73. Notice how

11

Figure 2.2.I: Splay Tree’s insert() function

in line 77 there is a newNode structured after the previous one was inserted, so it can be used in the next

insertion and improve time efficiency.

	 Figure 2.2.J visualizes the insertion algorithm provided in the function in Figure 2.2.I:

12

Figure 2.2.J: Splay Tree’s Insert() function visual

2.3 Adelson-Velskii and Landis (AVL) Tree

 

	 A height-balance feature is used by the AVL trees which specifies that each node's children can

only have a maximum height difference of one between them. Therefore if there is a height discrepancy

of more than 1, the tree is said to be unbalanced. In the height-balance feature, “height difference”

indicates the space between the left and right nodes, whereas “height” refers to the number of nodes in

between a node, a node without children (leaf).

	 As each side of a node has a height:

&

	 Some BSTs return a negative value HeightDifference, which is not acceptable for the AVL tree.

An AVL Tree needs all nodes to have a height difference of either 0 or 1 to be balanced.

	 Unlike the splay tree, the AVL tree undertakes a specific algorithm to rebalance after every

access. The process begins with a standard BST insertion (or any access), and if a node is found

unbalanced, a set of rotations will take place, same as splaying, this time to ensure balance in the tree.

	 When a tree is unbalanced on the right, it will be balanced with a left rotation (and vice-versa).

And while there is both, a double rotation will take place:

HeightDi f ference = heightlef t − heightright

HeightDi f ference = heightright − heightlef t

13

2.3.1 Single rotation

	 In single rotations, each node moves one space from its current position, dependent on whether it

is a Left rotation (LL) or right (RR).

14

Figure 2.3.A: Visual of a RR rotation

Figure 2.3.B: Visual of a LL rotation

2.3.2 Double rotation  

	 In double rotations, each node moves two spaces from its current position in different directions,

dependent on whether it is a left-right rotation (LR) or right-left (RL). First RR/LL rotation is performed

on the subtree and then LL/RR rotation is performed on the full tree, by the full tree we mean the first

node from the path of the inserted node whose balance factor is other than -1, 0, or 1.

 

15

Figure 2.3.C: Visual of a LR rotation

Figure 2.3.D: Visual of a RL rotation

	 Furthermore, let's look at the AVL Tree’s insert function (by Dr.Weiss) in detail (Appendix D).

The function above, the same as the Splay Tree, take a recursive approach for value insertion;

where x indicates the value being inserted, and t, the current node, beginning with the root.

The function balances the tree after an insertion takes place, according to the nodes’ height

property. Therefore as explained above, when t’s height difference equals 2, the tree needs balancing.

16

Figure 2.3.E: AVL Tree’s insert() function

	 Therefore when conditions on lines 128 and 137 are true, the restructuring process will start after

the value is inserted on lines 127 and 136, depending on the conditions on lines 129 and 138.

	 When a node is being inserted in one of ’s children, and , we will use

the AVL rotations as discussed above. I will explain the algorithm with an (if-else) approach:

A. If the node is being inserted into and , a LL single rotation will occur:

B. Else, if the node is being inserted into and , an RL double rotation will occur:

C. Else, if the node is being inserted into and , a RR single rotation will occur

t Heigh t Di f f er en cet = 2

tlef t x < valuelef t

tlef t x > valuelef t

tright x < valueright

17

Figure 2.3.F: AVL Tree’s rotatewithleftchild() function

Figure 2.3.G: AVL Tree’s doublewithleftchild() function

Figure 2.3.H: AVL Tree’s rotatewithrightchild() function

D. Else, if the node is being inserted into and , an LR double rotation will occur:

3. Hypothesis 

3.1 Approach 

	 After exploring the two trees in depth, it's time to evaluate their efficiency, by investigating their

time complexity upon node insertion. To do this, an experiment will be conducted to measure the time it

takes for each tree to add a specific number of value sets. Although this experiment seems to be

theoretically incorrect as both Splay and AVL trees have the same efficiency of upon insertion;

however, that is only for the physical insertion, and not the re-balancing. Our approach will in fact take

the re-balancing done after insertion into account, and the time complexity will be measured.

3.2 Expectations

 

	 Firstly, between the two trees, the AVL Tree is the one that prioritizes balance in the tree. As

discussed the AVL tree always balances itself after each insertion if . On the

other hand, the Splay Tree doesn't ensure balance in the tree and considers efficiency to be the

accessibility of newly accessed (inserted) nodes. As explained, the Splay Tree takes an approach to do so

with “Splaying”, in which only the “Zig-Zag” and “Zag-Zig” rotations will result in a balanced tree.

Consequently, the Splay Tree might be faster as it does less restructuring than the AVL Tree.

	 To determine the relationship between the trees upon node insertion, we have to measure the size

of sets being inserted () and the time () and evaluate their relation. My hypothesis is that the Splay

Tree will perform faster than the AVL Tree. I have this expectation, as the AVL Tree has to re-balance

tright x > valueright

0(log2N)

HeightDi f ference = 2

x y

18

Figure 2.3.I: AVL Tree’s doublewithrightchild() function

itself after each insertion, while the Splay Tree is re-balanced upon access, as only the node inserted will

be rotated towards the top of the tree. I also have the hypothesis that the gap between the trees’ efficiency

will grow, as the set sizes get larger, as the AVL Tree will have to do more restructuring.

4. Experimentation  

	 For the experimentation, only the time it takes to insert a number of values into a tree using the

 functions of both tree classes will need to be assessed since the efficiency of both insertion

procedures as a whole is being evaluated.

4.1 Fixed Variables

 

	 The fixed variable or the variable being measured for time complexity is the time taken for a

specific number of data sets to be inserted into a tree, and for the re-balancing algorithm being

executed. To achieve maximum precision the time measurement will be in nanoseconds; and to prevent

errors, the IDE’s time will not be considered, instead, the time between the value input and output will be

measured with the system’s time (in nanoseconds).

4.2 Independent Variables

 

	 The independent variable or the variable I will be changing throughout the experiment is the data

sets’ sizes being inserted in the tree. To have maximum precision, we are gonna use an ascending

sequence of data set sizes, so the time it takes for both trees to balance the data is optimized. The number

of sets being taken in this experiment is important, as they should be enough to make a suitable tree, can

plot as a graph, and be accurate enough to analyze for our comparison. However, too many sets of data

will overcrowd the graph and reduce readability. Therefore in this experiment, I will be taking 10

different sets of data as my inputs.

	 However, there are two challenges we face:

in ser t ()

19

1. The data inserted in the AVL Tree may just happen to automatically be in an order which makes the

AVL Tree balanced, in which situation, the AVL Tree will not execute its re-balancing algorithm, and

the experiment will lack precision. To fix this problem, sets will be inserted in the tree in linear order

to ensure re-balancing in the tree.

2. If sets get inserted in order, they will cause the Splay Tree to take a simple linear form, which will not

cause the Splay Tree to Splay, and no rotations will be executed. To ensure that splaying takes place,

sets will be inserted in the Splay Tree randomly. However, we are gonna ensure that repetition does

not take place.

	 The sets will be in the form of 1 to N. N being an arithmetic sequence, with the first term (a)

being 100 and a common difference (d) of 100.

:

{1 - 100}, {1 - 200}, {1 - 300},{1 - 400}, ... , {1 - 1000}

	 A code was written (Appendix A), with attention to all the above factors, to test the program, and

give us the results in nanoseconds.

10

∑
i=1

100n

20

4.3 Constant Variables

 

	 It is important to note that for this experiment various other variables are considered to affect the

time complexity. Although I cannot change those variables, they can still provide us with reasonable

results, as they are a base standard for most people around the world, which don't have special abilities or

disabilities.

Constant Variables Description Specifications

Machine (Computer) MacBook Pro — Apple

Processor: 2.6 GHz 6-core Intel Core i7

Memory: 16 GB 2667 MHz DDR4

Operating System: MacOS Monterey —

Version 12.2.1

Integrated Development Environment
(IDE) IntelliJ IDEA — JetBrains

Version: 2022.2.1 (Community Edition)

Build: #IC-222.3739.54 

Runtime version: 17.0.3+7-b469.37

x86_64

VM: OpenJDK 64-Bit Server VM by

JetBrains s.r.o.

Data Types 32-bit Integer (int)
Minimum Value: −231 Maximum

Value: 231 − 1

Programming Language

Java 8

Version: Java 8 — Update 321 (build

1.8.0_321-b07) 

OpenJDK version: 16.0.2 (2021-07-20)

OpenJDK Runtime Environment: build

16.0.2+7-67

OpenJDK 64-Bit Server VM: build

16.0.2+7-67, mixed mode, sharing

Figure 4.3.A: Constant Variables

21

4.4 Testing Procedure

 

	 My procedure for this experiment is:

The 20 chosen sets will be inserted into both AVL and Splay Trees. However, insertion will

happen in a random order to avoid the Splay Tree from taking a linear form. Note that repetition of values

will not take place. (Appendix A)

I. Calculating the output time in nanoseconds, by calculating the difference between input time and

output time. (Appendix A)

II. Taking the average of the raw data, and using them to plot a graph. (Appendix B)

5. Data Representation  

5.1 Numeric Presentation

 

	 Figure 5.1.A shows the average time taken for each set to be executed 10 times. This data is

based on the raw data collected (Appendix B).

22

Figure 5.1.A: Average insertion times for AVL & Splay Tree

5.2 Graph Presentation

 

	 Using the data presented in Figure 5.1.A the graph of time (y) against set sizes (x) was plotted to

better compare the efficiency of the Splay and AVL Trees.

RED — SPLAY TREE

BLUE — AVL TREE

	 To achieve a better comparison the average of the points is plotted in Figure 5.2.A will be

graphed; using the following formula (Exponential Regression):

 { }y ∼ abx 0 < x

23

Figure 5.2.A: Averages’ points

RED — SPLAY TREE

BLUE — AVL TREE

6. Test Analysis  

6.1 Hypothesis Evaluation

 

	 As presented in Figure 5.2.B, the Splay Tree is proven to be more time efficient than the AVL

Tree, which matches my hypothesis. However, my other hypothesis about the growing gap between the

efficiency of the two trees was proven to be somewhat false. Referring to Figure 5.2.B, from the (0,0) to

(500,1018619) coordinates, the gap between the points can be seen gradually increasing (approximately),

as expected. However, from the (500,1018619) to (1000,2127220.5) coordinates, the gap between the

points can be seen gradually decreasing (approximately). To understand why this is happening, I decided

24

Figure 5.2.B: Exponential Regression of the average points

to look at the gap between the average values of each set size, for each tree individually; by taking their

difference () & ().

	 Interestingly, after calculating the average gaps, I saw a relation between them. From set size 100

to 500, the time gap between the tests is actually decreasing and after approximately collapsing with each

other in the set size of 500 to 600, they start increasing from set size 700 to 1000. This relation can be

clearly seen in Figure 5.2.A. However, by calculating the gap between the average times in the AVL Tree,

I noticed that the AVL Tree has fewer gaps between each set size than the Splay (lower slope). That

suggests, that at some point the AVL Tree will become more efficient than the Splay.

	 I was stunned and wondered why this is happening, while the bigger the set sizes get, AVL Tree’s

re-balancing algorithm will become more complex and require more restructuring, as the Splaying system

will remain. After further research, I found out that the AVL Tree is able to perform lookups in parallel,

unlike the Splay Tree, and therefore saves time.

	 Another reason which came to my mind was the order in the data being inserted into the trees. As

we wanted to prevent the Splay tree from becoming linear, the data was inserted randomly, however for

the AVL Tree, the data was linear (Appendix A). This may have effected the process of re-balancing or

Splaying in each tree and made the AVL Tree perform faster, with larger data. However as this will not be

the case in real-life applications, the AVL’s advantage is not considered.

	 Therefore we can argue, that the data represented in this experiment, however correct, but are not

matched with the real-life applications of the trees from an “overall” scope. However, for this research,

they can clearly prove the better time efficiency of the Splay Tree, compared to AVL upon insertion

of data.

	 According to the experiment’s result averages which vary from approximately

for the Splay Tree, and approximately for the Splay Tree, it can be suggested that the

Splay Tree is far faster than the AVL in most cases, especially not multithreaded.

Avg2 − Avg1 Avgsplay − Avgavl

1.5 ⋅ 105 − 2 ⋅ 106

4.8 ⋅ 105 − 2.2 ⋅ 106

25

6.2 Relation Analysis  

	 By observing the data above, we can see a logarithmic relationship being in place between the

trees, as each tree have a variance higher than 0.9 which indicates a reasonable fit for a logarithmic model

between time and the size of sets in this comparison.

7. Conclusion

 

	 The experiment investigated the relationship between time and the size of sets being inserted into

the Spay Tree and the AVL Tree, using the background theory explained. The theory explored helped me

build a hypothesis about the Splay Tree being more time efficient, which was later proven to be true. To

take it further we also discussed the relation between the time gaps in the data and the logarithmic

relationship of time and size.

	 As the experiment was modeling an operation taking place every second and over trillions of

data, I came up with a creative method to test these trees upon insertion, by inserting randomly in the

Spay Tree and using ordered sets to ensure the requirement of restructuring for the AVL Tree. This proved

to me that although the Splay Tree is faster, at times is more efficient to put the AVL into use. Hence, my

conclusion is: for applications having multithreaded environments with a large number of lookups

required, the AVL Tree can perform better, as it can run parallel tasks. But in applications in which a large

number of data are being inserted into a tree, the Splay Tree will be much faster and will minimize the

total run-time of tree lookups, therefore they are more efficient.

	 Splay trees are also more memory-efficient than AVL trees because they do not need to store

balance information in the nodes. However, again because of the parallel working functionality, the AVL

Tree may perform better in multithreaded environments.

	 My answer to the research question of this research is that the efficiency of the two trees is

dependent on the task being completed, although in the terms of time complexity upon insertion of values

the Splay Tree will perform more efficiently in ordinary applications. Therefore we can conclude that an

AVL Tree is better used in an environment or database with frequent lookups and fewer insertion and

26

deletion actions, like a dictionary. A Splay Tree on the hand is better used on data structures that are

frequently modified, as it can handle new node actions faster and more efficiently, like the ‘rope’ data

structure, when various modifications are done in the data structure.

27

Bibliography

[in alphabetical order]  

[1] Allen, Peter K. “Splay Trees.” CS CU, Columbia University, 2014, https://www.cs.columbia.edu/
~allen/S14/NOTES/splaytrees.pdf.

[2] Geeks for Geeks. “Ropes Data Structure (Fast String Concatenation).” GeeksforGeeks, July 2022,
https://www.geeksforgeeks.org/ropes-data-structure-fast-string-concatenation/.

[3] Hadzilacos, Vassos. “Time Complexity of Algorithms .” Cs.toronto.edu, University of Toronto, https://
www.cs.toronto.edu/~vassos/teaching/c73/handouts/brief-complexity.pdf.

[4] Java Point. “Binary Search Tree .” www.javatpoint.com, https://www.javatpoint.com/binary- search-
tree.

[5] Mareš, Martin. “Lecture Notes on Data Structures.” Martin Mareš: Lecture Notes on Data Structures,
University Canada West, Feb. 2020, https://mj.ucw.cz/vyuka/dsnotes/02-splay.pdf.

[6] Massachusetts Institute of Technology . “Big O Notation .” Big O Notation , MIT, http:// web.mit.edu/
16.070/www/lecture/big_o.pdf.

[7] Mount, Dave. “CMSC 420: Lecture 5 AVL Trees - UMD.” AVL Trees , University of Maryland ,
2020, https://www.cs.umd.edu/class/fall2020/cmsc420-0201/Lects/lect05-avl.pdf.

[8] Tutorials Point Team. “Data Structure and Algorithms - AVL Trees.” Tutorials Point, https://
www.tutorialspoint.com/data_structures_algorithms/avl_tree_algorithm.htm.

[9] Weiss , Mark A. “AvlNode.java.” Users.cs.fiu.edu, Knight Foundation School of Computing and
Information Sciences , https://users.cs.fiu.edu/~weiss/dsaajava/code/DataStructures/AvlNode.java.

[10] Weiss, Mark A. “AvlTree.java.” Users.cs.fiu.edu, Knight Foundation School of Computing and
Information Sciences , https://users.cs.fiu.edu/~weiss/dsaajava/code/DataStructures/AvlTree.java.

[11] Weiss, Mark A. “SplayTree.java.” Users.cs.fiu.edu, Knight Foundation School of Computing and
Information Sciences , https://users.cs.fiu.edu/~weiss/dsaajava/code/DataStructures/SplayTree.java.

[12] Yse, Diego Lopez. “Essential Programming: Time Complexity.” Medium, Towards Data Science, 22
Nov. 2020, https://towardsdatascience.com/essential-programming-time-complexity-a95bb2608cac.

28

Appendices

Appendix A: Experiment’s Program

set_Min = 1
set_Max = 100 //changes

for(int trial = 1; trial <= 10; trial++) {
 AvlTree avl = new AvlTree();
 SplayTree spl = new SplayTree();

long startAVL = System.nanoTime();
for (double a = set_Min; a <= set; a++) {
 avl.insert(a);
}
long endAVL = System.nanoTime();

long startSPL = System.nanoTime();
ArrayList<Integer> list = new ArrayList<Integer>();
for (int b = set_Min; b <= set_Max; b++) {
 list.add(new Integer(b));
}
 Collections.shuffle(list);
 for (int b = 0; b < set_Max; b++) {
 spl.insert(b);
}
long endSPL = System.nanoTime();

System.out.println("AVL Trial " + trial + ": " + (endAVL - startAVL));
System.out.println("Splay Trial " + trial + ": " + (endSPL - startSPL));

}

Appendix B: Raw Data

29

B1: Splay Tree

Set Sizes 100 200 300 400 500

Unit NanoSec Sec NanoSec Sec NanoSec Sec NanoSec Sec NanoSec Sec

Test 1 201744 0.000201744 436492 0.000436492 2078642 0.002078642 2197050 0.00219705 3173905 0.003173905

Test 2 156784 0.000156784 282684 0.000282684 252479 0.000252479 856579 0.000856579 1079528 0.001079528

Test 3 93055 0.000093055 323414 0.000323414 709368 0.000709368 433070 0.00043307 1397736 0.001397736

Test 4 149931 0.000149931 99583 0.000099583 632834 0.000632834 144919 0.000144919 357274 0.000357274

Test 5 71035 0.000071035 244933 0.000244933 870898 0.000870898 433070 0.00043307 1475498 0.001475498

Test 6 328255 0.000328255 1099802 0.001099802 178642 0.000178642 635810 0.00063581 995519 0.000995519

Test 7 248163 0.000248163 336590 0.00033659 564300 0.0005643 543831 0.000543831 514676 0.000514676

Test 8 163265 0.000163265 208628 0.000208628 1171240 0.00117124 1252773 0.001252773 354114 0.000354114

Test 9 52125 0.000052125 292247 0.000292247 474865 0.000474865 433070 0.00043307 659687 0.000659687

Test 10 80748 0.000080748 195845 0.000195845 164060 0.00016406 383044 0.000383044 115026 0.000115026

Avg. 154510 0.0001545105 352022 0.0003520218 709732 0.0007097328 731322 0.0007313216 1012296 0.0010122963

Set Sizes 600 700 800 900 1000

Unit NanoSec Sec NanoSec Sec NanoSec Sec NanoSec Sec NanoSec Sec

Test 1 2416212 0.002416212 1160855 0.001160855 3017459 0.003017459 4477437 0.004477437 1841080 0.00184108

Test 2 999352 0.000999352 3492116 0.003492116 1693436 0.001693436 3818446 0.003818446 5390321 0.005390321

Test 3 1213070 0.00121307 405161 0.000405161 559638 0.000559638 329510 0.00032951 3167011 0.003167011

Test 4 1001918 0.001001918 516346 0.000516346 1468798 0.001468798 527725 0.000527725 1183997 0.001183997

Test 5 1973998 0.001973998 2460033 0.002460033 2336282 0.002336282 872963 0.000872963 715350 0.00071535

Test 6 670895 0.000670895 1870045 0.001870045 981249 0.000981249 2001991 0.002001991 1459759 0.001459759

Test 7 313603 0.000313603 966336 0.000966336 1440729 0.001440729 1602935 0.001602935 1431305 0.001431305

Test 8 2026700 0.0020267 318571 0.000318571 599940 0.00059994 1924004 0.001924004 3036682 0.003036682

Test 9 298094 0.000298094 1429579 0.001429579 720056 0.000720056 703180 0.00070318 782415 0.000782415

Test 10 774814 0.000774814 1012839 0.001012839 1192644 0.001192644 965214 0.000965214 1006353 0.001006353

Avg. 1168866 0.0011688656 1363188 0.0013631881 1401023 0.0014010231 1722341 0.0017223405 2001427 0.0020014273

30

B2: AVL Tree

Set Sizes 100 200 300 400 500

Unit NanoSec Sec NanoSec Sec NanoSec Sec NanoSec Sec NanoSec Sec

Test 1 110863 0.000110863 1102057 0.001102057 889309 0.000889309 382803 0.000382803 921303 0.000921303

Test 2 246155 0.000246155 390278 0.000390278 563106 0.000563106 791573 0.000791573 792251 0.000792251

Test 3 480647 0.000480647 582118 0.000582118 661011 0.000661011 1703945 0.001703945 589451 0.000589451

Test 4 372377 0.000372377 348519 0.000348519 2170925 0.002170925 1729676 0.001729676 636593 0.000636593

Test 5 1452811 0.001452811 101846 0.000101846 175012 0.000175012 621867 0.000621867 924509 0.000924509

Test 6 1051363 0.001051363 175065 0.000175065 961058 0.000961058 591686 0.000591686 1730891 0.001730891

Test 7 282112 0.000282112 193408 0.000193408 492268 0.000492268 871308 0.000871308 497046 0.000497046

Test 8 333940 0.00033394 2069873 0.002069873 1036203 0.001036203 451748 0.000451748 1927493 0.001927493

Test 9 411330 0.00041133 494060 0.00049406 656422 0.000656422 628317 0.000628317 501453 0.000501453

Test 10 115329 0.000115329 700666 0.000700666 760935 0.000760935 550865 0.000550865 1728430 0.00172843

Avg. 485692 0.0004856927 615789 0.000615789 836625 0.0008366249 832379 0.0008323788 1024942 0.001024942

Set Sizes 600 700 800 900 1000

Unit NanoSec Sec NanoSec Sec NanoSec Sec NanoSec Sec NanoSec Sec

Test 1 662959 0.000662959 2634935 0.002634935 4157917 0.004157917 3540938 0.003540938 6721712 0.006721712

Test 2 2402168 0.002402168 1357045 0.001357045 2046193 0.002046193 2232438 0.002232438 3846201 0.003846201

Test 3 493687 0.000493687 1127999 0.001127999 166998 0.000166998 652454 0.000652454 2037499 0.002037499

Test 4 811742 0.000811742 712934 0.000712934 1834990 0.00183499 4720899 0.004720899 1455077 0.001455077

Test 5 1398992 0.001398992 881823 0.000881823 1707961 0.001707961 598151 0.000598151 408907 0.000408907

Test 6 914825 0.000914825 1972825 0.001972825 2654468 0.002654468 1616466 0.001616466 674037 0.000674037

Test 7 3630656 0.003630656 665437 0.000665437 1497781 0.001497781 1008058 0.001008058 1787696 0.001787696

Test 8 706410 0.00070641 3013506 0.003013506 1095276 0.001095276 1041388 0.001041388 370219 0.000370219

Test 9 495274 0.000495274 1072825 0.001072825 218558 0.000218558 1251639 0.001251639 4183004 0.004183004

Test 10 318222 0.000318222 1638759 0.001638759 606952 0.000606952 851391 0.000851391 1045791 0.001045791

Avg. 1183494 0.0011834935 1507808 0.0015078088 1598709 0.0015987094 1751382 0.0017513822 2253014 0.0022530143

31

Appendix C: Splay Tree’s Java Code (Mark Weiss)

// SplayTree class
//
// CONSTRUCTION: with no initializer
//
// ******************PUBLIC OPERATIONS*********************
// void insert(x) --> Insert x
// void remove(x) --> Remove x
// boolean contains(x) --> Return true if x is found
// Comparable findMin() --> Return smallest item
// Comparable findMax() --> Return largest item
// boolean isEmpty() --> Return true if empty; else false
// void makeEmpty() --> Remove all items
// ******************ERRORS********************************
// Throws UnderflowException as appropriate

/**
 * Implements a top-down splay tree.
 * Note that all "matching" is based on the compareTo method.
 * @author Mark Allen Weiss
 */
public class SplayTree<AnyType extends Comparable<! super AnyType>>
{
 /**
 * Construct the tree.
 */
 public SplayTree()
 {
 nullNode = new BinaryNode<AnyType>(null);
 nullNode.left = nullNode.right = nullNode;
 root = nullNode;
 }

 private BinaryNode<AnyType> newNode = null; // Used between different
inserts

 /**
 * Insert into the tree.
 * @param x the item to insert.
 */

32

 public void insert(AnyType x)
 {
 if(newNode == null)
 newNode = new BinaryNode<AnyType>(null);
 newNode.element = x;

 if(root == nullNode)
 {
 newNode.left = newNode.right = nullNode;
 root = newNode;
 }
 else
 {
 root = splay(x, root);

 int compareResult = x.compareTo(root.element);

 if(compareResult < 0)
 {
 newNode.left = root.left;
 newNode.right = root;
 root.left = nullNode;
 root = newNode;
 }
 else
 if(compareResult > 0)
 {
 newNode.right = root.right;
 newNode.left = root;
 root.right = nullNode;
 root = newNode;
 }
 else
 return; // No duplicates
 }
 newNode = null; // So next insert will call new
 }

33

 /**
 * Remove from the tree.
 * @param x the item to remove.
 */
 public void remove(AnyType x)
 {
 if("contains(x))
 return;

 BinaryNode<AnyType> newTree;

 // If x is found, it will be splayed to the root by contains
 if(root.left == nullNode)
 newTree = root.right;
 else
 {
 // Find the maximum in the left subtree
 // Splay it to the root; and then attach right child
 newTree = root.left;
 newTree = splay(x, newTree);
 newTree.right = root.right;
 }
 root = newTree;
 }

 /**
 * Find the smallest item in the tree.
 * Not the most efficient implementation (uses two passes), but has correct
 * amortized behavior.
 * A good alternative is to first call find with parameter
 * smaller than any item in the tree, then call findMin.
 * @return the smallest item or throw UnderflowException if empty.
 */
 public AnyType findMin()
 {
 if(isEmpty())
 throw new UnderflowException();

 BinaryNode<AnyType> ptr = root;

 while(ptr.left "= nullNode)

34

 ptr = ptr.left;

 root = splay(ptr.element, root);
 return ptr.element;
 }

 /**
 * Find the largest item in the tree.
 * Not the most efficient implementation (uses two passes), but has correct
 * amortized behavior.
 * A good alternative is to first call find with parameter
 * larger than any item in the tree, then call findMax.
 * @return the largest item or throw UnderflowException if empty.
 */
 public AnyType findMax()
 {
 if(isEmpty())
 throw new UnderflowException();

 BinaryNode<AnyType> ptr = root;

 while(ptr.right "= nullNode)
 ptr = ptr.right;

 root = splay(ptr.element, root);
 return ptr.element;
 }

 /**
 * Find an item in the tree.
 * @param x the item to search for.
 * @return true if x is found; otherwise false.
 */
 public boolean contains(AnyType x)
 {
 if(isEmpty())
 return false;

 root = splay(x, root);

 return root.element.compareTo(x) == 0;
 }

35

 /**
 * Make the tree logically empty.
 */
 public void makeEmpty()
 {
 root = nullNode;
 }

 /**
 * Test if the tree is logically empty.
 * @return true if empty, false otherwise.
 */
 public boolean isEmpty()
 {
 return root == nullNode;
 }

 private BinaryNode<AnyType> header = new BinaryNode<AnyType>(null); //
For splay

 /**
 * Internal method to perform a top-down splay.
 * The last accessed node becomes the new root.
 * @param x the target item to splay around.
 * @param t the root of the subtree to splay.
 * @return the subtree after the splay.
 */
 private BinaryNode<AnyType> splay(AnyType x, BinaryNode<AnyType> t)
 {
 BinaryNode<AnyType> leftTreeMax, rightTreeMin;
 header.left = header.right = nullNode;
 leftTreeMax = rightTreeMin = header;
 nullNode.element = x; // Guarantee a match
 for(; ;)
 {
 int compareResult = x.compareTo(t.element);

 if(compareResult < 0)
 {
 if(x.compareTo(t.left.element) < 0)
 t = rotateWithLeftChild(t);

36

 if(t.left == nullNode)
 break;
 // Link Right
 rightTreeMin.left = t;
 rightTreeMin = t;
 t = t.left;
 }

 else if(compareResult > 0)
 {
 if(x.compareTo(t.right.element) > 0)
 t = rotateWithRightChild(t);
 if(t.right == nullNode)
 break;
 // Link Left
 leftTreeMax.right = t;
 leftTreeMax = t;
 t = t.right;
 }
 else
 break;
 }

 leftTreeMax.right = t.left;
 rightTreeMin.left = t.right;
 t.left = header.right;
 t.right = header.left;
 return t;
 }

 /**
 * Rotate binary tree node with left child.
 * For AVL trees, this is a single rotation for case 1.
 */
 p r i v a t e s t a t i c < A n y T y p e > B i n a r y N o d e < A n y T y p e >
rotateWithLeftChild(BinaryNode<AnyType> k2)
 {
 BinaryNode<AnyType> k1 = k2.left;
 k2.left = k1.right;
 k1.right = k2;
 return k1;

37

 }

 /**
 * Rotate binary tree node with right child.
 * For AVL trees, this is a single rotation for case 4.
 */
 p r i v a t e s t a t i c < A n y T y p e > B i n a r y N o d e < A n y T y p e >
rotateWithRightChild(BinaryNode<AnyType> k1)
 {
 BinaryNode<AnyType> k2 = k1.right;
 k1.right = k2.left;
 k2.left = k1;
 return k2;
 }

 // Basic node stored in unbalanced binary search trees
 private static class BinaryNode<AnyType>
 {
 // Constructors
 BinaryNode(AnyType theElement)
 {
 this(theElement, null, null);
 }

 BinaryNode(AnyType theElement, BinaryNode<AnyType> lt,
BinaryNode<AnyType> rt)
 {
 element = theElement;
 left = lt;
 right = rt;
 }

 AnyType element; // The data in the node
 BinaryNode<AnyType> left; // Left child
 BinaryNode<AnyType> right; // Right child
 }

 private BinaryNode<AnyType> root;
 private BinaryNode<AnyType> nullNode;

 // Test program; should print min and max and nothing else

38

 public static void main(String [] args)
 {
 SplayTree<Integer> t = new SplayTree<Integer>();
 final int NUMS = 40000;
 final int GAP = 307;

 System.out.println("Checking... (no bad output means success)");

 for(int i = GAP; i "= 0; i = (i + GAP) % NUMS)
 t.insert(i);
 System.out.println("Inserts complete");

 for(int i = 1; i < NUMS; i += 2)
 t.remove(i);
 System.out.println("Removes complete");

 if(t.findMin() "= 2 || t.findMax() "= NUMS - 2)
 System.out.println("FindMin or FindMax error"");

 for(int i = 2; i < NUMS; i += 2)
 if("t.contains(i))
 System.out.println("Error: find fails for " + i);

 for(int i = 1; i < NUMS; i += 2)
 if(t.contains(i))
 System.out.println("Error: Found deleted item " + i);
 }
}

39

Appendix D: AVL Tree’s Java Code (Mark Weiss)

D1: AvlTree.java

 // BinarySearchTree class
 //
 // CONSTRUCTION: with no initializer
 //
 // ******************PUBLIC OPERATIONS*********************
 // void insert(x) --> Insert x
 // void remove(x) --> Remove x (unimplemented)
 // Comparable find(x) --> Return item that matches x
 // Comparable findMin() --> Return smallest item
 // Comparable findMax() --> Return largest item
 // boolean isEmpty() --> Return true if empty; else false
 // void makeEmpty() --> Remove all items
 // void printTree() --> Print tree in sorted order

 /**
 * Implements an AVL tree.
 * Note that all "matching" is based on the compareTo method.
 * @author Mark Allen Weiss
 */
 public class AvlTree
 {
 /**
 * Construct the tree.
 */
 public AvlTree()
 {
 root = null;
 }

 /**
 * Insert into the tree; duplicates are ignored.
 * @param x the item to insert.
 */
 public void insert(Comparable x)
 {
 root = insert(x, root);
 }

40

 /**
 * Remove from the tree. Nothing is done if x is not found.
 * @param x the item to remove.
 */
 public void remove(Comparable x)
 {
 System.out.println("Sorry, remove unimplemented");
 }

 /**
 * Find the smallest item in the tree.
 * @return smallest item or null if empty.
 */
 public Comparable findMin()
 {
 return elementAt(findMin(root));
 }

 /**
 * Find the largest item in the tree.
 * @return the largest item of null if empty.
 */
 public Comparable findMax()
 {
 return elementAt(findMax(root));
 }

 /**
 * Find an item in the tree.
 * @param x the item to search for.
 * @return the matching item or null if not found.
 */
 public Comparable find(Comparable x)
 {
 return elementAt(find(x, root));
 }

 /**
 * Make the tree logically empty.
 */
 public void makeEmpty()

41

 {
 root = null;
 }

 /**
 * Test if the tree is logically empty.
 * @return true if empty, false otherwise.
 */
 public boolean isEmpty()
 {
 return root == null;
 }

 /**
 * Print the tree contents in sorted order.
 */
 public void printTree()
 {
 if(isEmpty())
 System.out.println("Empty tree");
 else
 printTree(root);
 }

 /**
 * Internal method to get element field.
 * @param t the node.
 * @return the element field or null if t is null.
 */
 private Comparable elementAt(AvlNode t)
 {
 return t == null ! null : t.element;
 }

 /**
 * Internal method to insert into a subtree.
 * @param x the item to insert.
 * @param t the node that roots the tree.
 * @return the new root.
 */
 private AvlNode insert(Comparable x, AvlNode t)
 {

42

 if(t == null)
 t = new AvlNode(x, null, null);
 else if(x.compareTo(t.element) < 0)
 {
 t.left = insert(x, t.left);
 if(height(t.left) - height(t.right) == 2)
 if(x.compareTo(t.left.element) < 0)
 t = rotateWithLeftChild(t);
 else
 t = doubleWithLeftChild(t);
 }
 else if(x.compareTo(t.element) > 0)
 {
 t.right = insert(x, t.right);
 if(height(t.right) - height(t.left) == 2)
 if(x.compareTo(t.right.element) > 0)
 t = rotateWithRightChild(t);
 else
 t = doubleWithRightChild(t);
 }
 else
 ; // Duplicate; do nothing
 t.height = max(height(t.left), height(t.right)) + 1;
 return t;
 }

 /**
 * Internal method to find the smallest item in a subtree.
 * @param t the node that roots the tree.
 * @return node containing the smallest item.
 */
 private AvlNode findMin(AvlNode t)
 {
 if(t == null)
 return t;

 while(t.left "= null)
 t = t.left;
 return t;
 }

 /**

43

 * Internal method to find the largest item in a subtree.
 * @param t the node that roots the tree.
 * @return node containing the largest item.
 */
 private AvlNode findMax(AvlNode t)
 {
 if(t == null)
 return t;

 while(t.right "= null)
 t = t.right;
 return t;
 }

 /**
 * Internal method to find an item in a subtree.
 * @param x is item to search for.
 * @param t the node that roots the tree.
 * @return node containing the matched item.
 */
 private AvlNode find(Comparable x, AvlNode t)
 {
 while(t "= null)
 if(x.compareTo(t.element) < 0)
 t = t.left;
 else if(x.compareTo(t.element) > 0)
 t = t.right;
 else
 return t; // Match

 return null; // No match
 }

 /**
 * Internal method to print a subtree in sorted order.
 * @param t the node that roots the tree.
 */
 private void printTree(AvlNode t)
 {
 if(t "= null)
 {
 printTree(t.left);

44

 System.out.println(t.element);
 printTree(t.right);
 }
 }

 /**
 * Return the height of node t, or -1, if null.
 */
 private static int height(AvlNode t)
 {
 return t == null ! -1 : t.height;
 }

 /**
 * Return maximum of lhs and rhs.
 */
 private static int max(int lhs, int rhs)
 {
 return lhs > rhs ! lhs : rhs;
 }

 /**
 * Rotate binary tree node with left child.
 * For AVL trees, this is a single rotation for case 1.
 * Update heights, then return new root.
 */
 private static AvlNode rotateWithLeftChild(AvlNode k2)
 {
 AvlNode k1 = k2.left;
 k2.left = k1.right;
 k1.right = k2;
 k2.height = max(height(k2.left), height(k2.right)) + 1;
 k1.height = max(height(k1.left), k2.height) + 1;
 return k1;
 }

 /**
 * Rotate binary tree node with right child.
 * For AVL trees, this is a single rotation for case 4.
 * Update heights, then return new root.
 */
 private static AvlNode rotateWithRightChild(AvlNode k1)

45

 {
 AvlNode k2 = k1.right;
 k1.right = k2.left;
 k2.left = k1;
 k1.height = max(height(k1.left), height(k1.right)) + 1;
 k2.height = max(height(k2.right), k1.height) + 1;
 return k2;
 }

 /**
 * Double rotate binary tree node: first left child
 * with its right child; then node k3 with new left child.
 * For AVL trees, this is a double rotation for case 2.
 * Update heights, then return new root.
 */
 private static AvlNode doubleWithLeftChild(AvlNode k3)
 {
 k3.left = rotateWithRightChild(k3.left);
 return rotateWithLeftChild(k3);
 }

 /**
 * Double rotate binary tree node: first right child
 * with its left child; then node k1 with new right child.
 * For AVL trees, this is a double rotation for case 3.
 * Update heights, then return new root.
 */
 private static AvlNode doubleWithRightChild(AvlNode k1)
 {
 k1.right = rotateWithLeftChild(k1.right);
 return rotateWithRightChild(k1);
 }

 /** The tree root. */
 private AvlNode root;

 // Test program
 public static void main(String [] args)
 {
 AvlTree t = new AvlTree();
 final int NUMS = 4000;

46

 final int GAP = 37;

 System.out.println("Checking... (no more output means success)");

 for(int i = GAP; i "= 0; i = (i + GAP) % NUMS)
 t.insert(new MyInteger(i));

 if(NUMS < 40)
 t.printTree();
 if(((MyInteger)(t.findMin())).intValue() "= 1 ||
 ((MyInteger)(t.findMax())).intValue() "= NUMS - 1)
 System.out.println("FindMin or FindMax error"");

 for(int i = 1; i < NUMS; i++)
 if(((MyInteger)(t.find(new MyInteger(i)))).intValue() "= i)
 System.out.println("Find error1"");
 }
}

47

D2: AvlNode.java

 // Basic node stored in AVL trees
 // Note that this class is not accessible outside
 // of package DataStructures

 class AvlNode
 {
 // Constructors
 AvlNode(Comparable theElement)
 {
 this(theElement, null, null);
 }

 AvlNode(Comparable theElement, AvlNode lt, AvlNode rt)
 {
 element = theElement;
 left = lt;
 right = rt;
 height = 0;
 }

 // Friendly data; accessible by other package routines
 Comparable element; // The data in the node
 AvlNode left; // Left child
 AvlNode right; // Right child
 int height; // Height
 }

48

Appendix E: Binary Search Tree C Code

#include<stdio.h>
#include<stdlib.h>

struct node
{
 int key;
 struct node *left;
 struct node *right;
};

struct node *getNewNode(int val)
{
 struct node *newNode = malloc(sizeof(struct node));
 newNode->key = val;
 newNode->left = NULL;
 newNode->right = NULL;

 return newNode;
}

struct node *insert(struct node *root, int val)
{
 if(root == NULL)
 return getNewNode(val);

 if(root->key < val)
 root->right = insert(root->right,val);

 else if(root->key > val)
 root->left = insert(root->left,val);

 return root;
}

void inorder(struct node *root)
{
 if(root == NULL)
 return;
 inorder(root->left);

49

 printf("%d ",root->key);
 inorder(root->right);
}

int main()
{
 struct node *root = NULL;
 root = insert(root,100);.
 root = insert(root,50);
 root = insert(root,150);
 root = insert(root,50);

 inorder(root);

 return 0;
}

50

	1. Introduction
	2. Theory
	3. Hypothesis
	4. Experimentation
	5. Data Representation
	6. Test Analysis
	7. Conclusion
	Bibliography

